
Postbuckling analysis of axially loaded functionally
graded cylindrical panels in thermal environments

Hui-Shen Shen

School of Civil Engineering and Mechanics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China

Received 5 November 2001; received in revised form 18 July 2002

Abstract

A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial

compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the

thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents.

The governing equations of a functionally graded cylindrical panel are based on Reddy�s higher order shear defor-

mation shell theory with a von K�aarm�aan–Donnell-type of kinematic nonlinearity and including thermal effects. Two

cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric

imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the

effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric im-

perfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A

singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The

numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded

cylindrical panels with two constituent materials and under different sets of thermal environments. The influences

played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse

shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have received considerable attention in many engineering ap-

plications since they were first reported in 1984 in Japan (see Koizumi, 1993). FGMs are composite

materials, microscopically inhomogeneous, in which the mechanical properties vary smoothly and con-

tinuously from one surface to the other. This is achieved by gradually varying the volume fraction of the

constituent materials. FGMs were initially designed as thermal barrier materials for aerospace structural

applications and fusion reactors. FGMs are now developed for general use as structural components in
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extremely high temperature environments. Unlike fiber–matrix composites which have a mismatch of

mechanical properties across an interface of two discrete materials bonded together and may result in

debonding at high temperatures, FGMs have the advantage of being able to withstand high temperature

environments while maintaining their structural integrity. With the increased usage of these materials, it is
important to understand the buckling and postbuckling behaviors of functionally graded cylindrical panels.

Many postbuckling studies, based on classical shell theory, of composite laminated thin cylindrical

panels subjected to mechanical or thermal loading are available in the literature (see, for example Zhang

and Matthews, 1985; Huang and Taucher, 1991). Relatively few studies involving the application of shear

deformation shell theory to postbuckling analysis can be found in Chia (1987); Kweon and Hong (1994);

Kweon et al. (1995); Chang and Librescu (1995), and Librescu et al. (2000). In these studies the material

properties are considered to be independent of temperature. However, investigations of FGM cylindrical

shells under mechanical or thermal loading are limited in number. Loy et al. (1999) gave a free vibration
analysis of simply supported FGM cylindrical thin shells. This work is then extended to the case of FGM

cylindrical thin shells under various boundary conditions by Pradhan et al. (2000). Ng et al. (2001) studied

the parametric resonance or dynamic stability of FGM cylindrical thin shells under periodic axial loading.

In the forgoing studies, Reddy and his co-workers developed a simple theory, in which the material

properties are graded in the thickness direction according to a volume fraction power law distribution, but

their numerical results were only for a simple case of an FGM shell in a fixed thermal environment. Re-

cently, Shen (2002b) gave a postbuckling analysis of FGM cylindrical thin shells subjected to axial com-

pression in thermal environments. Note that in the above studies the shells are considered as being relatively
thin and therefore the transverse shear deformation is usually not accounted for.

It has been shown in Shen and Chen (1988, 1990) that in shell buckling, there is a boundary layer

phenomenon where prebuckling and buckling displacement vary rapidly. They suggested a boundary layer

theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections

in the postbuckling range, and initial geometric imperfections of the shell. Based on this theory, the

postbuckling analyses for perfect and imperfect, unstiffened and stiffened, thin and moderately thick,

isotropic and multilayered cylindrical shells under various loading cases have been performed by Shen and

Chen (1990) and Shen (1997a,b,c, 1998, 2001a,b, 2002a,b). The present paper extends the previous works to
the case of FGM cylindrical panels of finite length with two constituent materials subjected to compressive

axial loads in thermal environments. The material properties are assumed to be temperature dependent, and

graded in thickness direction according to a volume fraction power law distribution. The governing

equations are based on Reddy�s higher order shear deformation shell theory with a von K�aarm�aan–Donnell-

type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed

to determine the buckling loads and postbuckling equilibrium paths. The nonlinear prebuckling defor-

mations and initial geometric imperfections of the panel are both taken into account but, for simplicity, the

form of initial geometric imperfection is assumed to be the same as the initial buckling mode of the panel.
The numerical illustrations show the full nonlinear postbuckling response of FGM cylindrical panels

subjected to axial compression and under different sets of environmental conditions.

2. Theoretical development

Consider an FGM cylindrical panel made from a mixture of ceramics and metals is subjected to axial

compressive load P0 combined with thermal loads. The panel is referred to a coordinate system (X ; Y ; Z) in
which X and Y are in the axial and circumferential directions of the panel and Z is in the direction of the

inward normal to the middle surface, the corresponding displacement designated by U , V and W . Wx and

Wy are the rotations of normals to the middle surface with respect to the Y - and X -axes, respectively. The
origin of the coordinate system is located at the corner of the panel on the middle plane. R is the radius of
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curvature, t the panel thickness, a the length in the X -direction, and b the length in the Y -direction, as
shown in Fig. 1. The panel is assumed to be geometrically imperfect. Denoting the initial geometric im-

perfection by W
�ðX ; Y Þ, let W ðX ; Y Þ be the additional deflection and F ðX ; Y Þ be the stress function for the

stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a comma denotes partial differ-

entiation with respect to the corresponding coordinates.

We assume that the composition is varied from the outer to the inner surface, i.e. the outer surface

(Z ¼ �t=2) of the panel is ceramic-rich whereas the inner surface (Z ¼ t=2) is metal-rich. In such a way, the

effective material properties P , like Young�s modulus E or thermal expansion coefficient a, can be expressed as

P ¼ PtVc þ PbVm ð1Þ
in which Pt and Pb denote the temperature-dependent properties of the outer and inner surfaces of the panel,

respectively, and Vc and Vm are the ceramic and metal volume fractions and are related by

Vc þ Vm ¼ 1 ð2Þ
We assume the volume fraction Vm follows a simple power law as

Vm ¼ 2Z þ t
2t

� �N

ð3Þ

where volume fraction index N dictates the material variation profile through the panel thickness and may

be varied to obtain the optimum distribution of component materials. It is noted that similar definition can

be found in Ng et al. (2001), but is for Vc.
From Eqs. (1)–(3), the effective Young�s modulus E and thermal expansion coefficient a of an FGM

cylindrical panel can be written as

E ¼ ðEb � EtÞ
2Z þ t
2t

� �N

þ Et; a ¼ ðab � atÞ
2Z þ t
2t

� �N

þ at ð4Þ

It is evident that when Z ¼ �t=2, E ¼ Et and a ¼ at, and when Z ¼ t=2, E ¼ Eb and a ¼ ab. It is assumed
that Et, Eb, at and ab are functions of temperature, but Poisson�s ratio m depends weakly on temperature

Fig. 1. Geometry and coordinate system of an FGM cylindrical panel.
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change and is assumed to be a constant, as shown in Section 4, so that E and a are functions of temperature

and position.

Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the

transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same dependent unknowns as in the first order shear deformation theory. Based on Reddy�s
higher order shear deformation theory with von K�aarm�aan–Donnell-type kinematic relations and including

thermal effects, the governing differential equations for an FGM cylindrical panel are derived and can be

expressed in terms of a stress function F , two rotations Wx and Wy , and transverse displacement W , along

with initial geometric imperfection W
�
. They are

eLL11ðW Þ � eLL12ðWxÞ � eLL13ðWyÞ þ eLL14ðF Þ � eLL15ðN
TÞ � eLL16ðM

TÞ � 1

R
F ;xx¼ eLLðW þ W �

; F Þ ð5Þ

eLL21ðF Þ þ eLL22ðWxÞ þ eLL23ðWyÞ � eLL24ðW Þ � eLL25ðN
TÞ þ 1

R
W ;xx¼ � 1

2
eLLðW þ 2W

�
;W Þ ð6Þ

eLL31ðW Þ þ eLL32ðWxÞ � eLL33ðWyÞ þ eLL34ðF Þ � eLL35ðN
TÞ � eLL36ðS

TÞ ¼ 0 ð7Þ

eLL41ðW Þ � eLL42ðWxÞ þ eLL43ðWyÞ þ eLL44ðF Þ � eLL45ðN
TÞ � eLL46ðS

TÞ ¼ 0 ð8Þ

where linear operators eLLijð Þ and nonlinear operator eLLð Þ are defined as in Shen (2002c).

It is noted that these panel equations show thermal coupling as well as the interaction of stretching and
bending. Also, note that Eqs. (5)–(8) are identical to those of unsymmetric cross-ply laminated cylindrical

shells under thermomechanical loading.

The forces, moments and higher order moments caused by elevated temperature are defined by
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where DT is temperature rise from some reference temperature at which there are no thermal strains, and

Ax
Ay
Axy

24 35 ¼ �
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

24 35 1 0

0 1
0 0

24 35 a
a

� �
ð10Þ

where the thermal expansion coefficient a is given in detail in Eq. (4), and

Q11 ¼ Q22 ¼
E

1� m2
; Q12 ¼

mE
1� m2

; Q16 ¼ Q26 ¼ 0; Q44 ¼ Q55 ¼ Q66 ¼
E

2ð1þ mÞ ð11Þ

in which E is also given in detail in Eq. (4),and vary through the panel thickness.

All four edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges,
two cases, Case 1 (referred to herein as movable edges) and Case 2 (referred to herein as immovable edges),

will be considered.

5994 H.-S. Shen / International Journal of Solids and Structures 39 (2002) 5991–6010



Case 1: The edges are simply supported and freely movable in the X - and Y -directions, respectively.
Case 2: All four edges are simply supported. Uniaxial edge loads are acting in the X -direction. The

curved edges (X ¼ 0; a) are considered freely movable (in the in-plane direction), the remaining two straight

edges being unloaded and immovable (in the Y -direction).
For both cases the associated boundary conditions could be found in Chang and Librescu (1995). In the

present paper, they are

X ¼ 0; a:

W ¼ V ¼ Wy ¼ 0 ð12aÞ

Mx ¼ Px ¼ 0 ð12bÞZ b

0

Nx dY þ rxtb ¼ 0 ð12cÞ

Y ¼ 0; b:

W ¼ Wx ¼ 0 ð12dÞ

Nxy ¼ 0 ð12eÞZ a

0

Ny dX ¼ 0 ðmovable edgesÞ ð12fÞ

V ¼ 0 ðimmovable edgesÞ ð12gÞ
where rx is the average axial compressive stress, Mx is the bending moment and Px is higher order moment

as defined in Reddy and Liu (1985). The condition expressing the immovability condition V ¼ 0 (on
Y ¼ 0; b) is fulfilled on the average sense as (Chang and Librescu, 1995)Z a

0

Z b

0

oV
oY

dY dX ¼ 0 ð13aÞ

or Z a

0

Z b

0

A�
22

o2F
oX 2

"
þ A�

12

o2F
oY 2

þ B�
21

�
� 4

3t2
E�
21

�
oWx

oX
þ B�

22

�
� 4

3t2
E�
22

�
oWy

oY
� 4

3t2
E�
21

o2W
oX 2

�
þ E�

22

o2W
oY 2

�

þ W
R

� 1

2

oW
oY

� �2

� oW
oY

oW
�

oY
�
�
A�
12N

T

x þ A�
22N

T

y

�#
dY dX ¼ 0 ð13bÞ

The average end-shortening relationship is

Dx
a

¼ � 1

ab

Z b

0

Z a

0

oU
oX

dX dY

¼ � 1

ab

Z b

0

Z a

0

A�
11

o2F
oY 2

"
þ A�

12

o2F
oX 2

þ B�
11

�
� 4

3t2
E�
11

�
oWx

oX
þ B�

12

�
� 4

3t2
E�
12

�
oWy

oY

� 4

3t2
E�
11

o2W
oX 2

�
þ E�

12

o2W
oY 2

�
� 1

2

oW
oX

� �2

� oW
oX
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�
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�
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11N

T

x þ A�
12N
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dX dY ð14Þ
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In Eqs. (13b), (14) and Eq. (17) below, the reduced stiffness matrices ½A�
ij�, ½B�

ij�, ½D�
ij�, ½E�

ij�, ½F �
iJ � and ½H �

ij�
(i; j ¼ 1; 2; 6) are functions of temperature and position, defined by

A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B;

H� ¼ H� EA�1E ð15Þ

where Aij, Bij etc., are the panel stiffnesses, defined by

ðAij;Bij;Dij;Eij; Fij;HijÞ ¼
Z t=2

�t=2
ðQijÞð1; Z; Z2; Z3; Z4; Z6ÞdZ; i; j ¼ 1; 2; 6 ð16aÞ

ðAij;Dij; FijÞ ¼
Z t=2

�t=2
ðQijÞð1; Z2; Z4ÞdZ; i; j ¼ 4; 5 ð16bÞ

3. Analytical method and asymptotic solutions

Having developed the theory, we now try to solve Eqs. (5)–(8) with boundary conditions (12a)–(12g).

Before proceeding, it is convenient first to define the following dimensionless quantities (with cijk in Eqs.

(23), (25) and (26) below are defined as in Shen (2002c))

x ¼ pX=a; y ¼ pY =b; b ¼ a=b; Z ¼ a2=Rt; e ¼ ðp2R=a2Þ½D�
11D

�
22A

�
11A

�
22�

1=4
;

ðW ;W �Þ ¼ eðW ;W
�Þ=½D�

11D
�
22A

�
11A

�
22�

1=4
; F ¼ e2F =½D�

11D
�
22�

1=2
;

ðWx;WyÞ ¼ e2ðWx;WyÞða=pÞ=½D�
11D

�
22A

�
11A

�
22�

1=4
;

c14 ¼ ½D�
22=D

�
11�

1=2
; c24 ¼ ½A�

11=A
�
22�

1=2
; c5 ¼ �A�

12=A
�
22;

ðc31; c41Þ ¼ ða2=p2ÞðA55 � 8D55=t2 þ 16F55=t4;A44 � 8D44=t2 þ 16F44=t4Þ=D�
11

ðcT1; cT2Þ ¼ ðAT
x ;A

T
y ÞR½A�

11A
�
22=D

�
11D

�
22�

1=4
;

ðMx; Px;MT
x ; P

T
x Þ ¼ e2ðMx; 4Px=3t2;M

T

x ; 4P
T

x =3t
2Þa2=p2D�

11½D�
11D

�
12A

�
11A

�
12�

1=4
;

kp ¼ rx=ð2=RtÞ½D�
11D

�
22=A

�
11A

�
22�

1=4
; dp ¼ ðDx=aÞ=ð2=RÞ½D�

11D
�
22A

�
11A

�
22�

1=4

ð17Þ

in which AT
x ¼ AT

y are defined by

AT
x

AT
y

� �
¼ �

Z t=2

�t=2

Ax
Ay

� �
dZ ð18Þ

and the details of which can be found in Appendix A.

The nonlinear equations (5)–(8) may then be written in dimensionless form as

e2L11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ ec14L14ðF Þ � c14F ;xx¼ c14b
2LðW þ W �

T ; F Þ ð19Þ

L21ðF Þ þ c24L22ðWxÞ þ c24L23ðWyÞ � ec24L24ðW Þ þ c24W ;xx¼ � 1

2
c24b

2LðW þ 2W �
T ;W Þ ð20Þ

eL31ðW Þ þ L32ðWxÞ � L33ðWyÞ þ c14L34ðF Þ ¼ 0 ð21Þ

eL41ðW Þ � L42ðWxÞ þ L43ðWyÞ þ c14L44ðF Þ ¼ 0 ð22Þ
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where W �
T ¼ W � þ W �

II , and W
�
II is the additional deflection caused by additional compressive stresses that

develop in the panel with immovable edges, and for the case of movable straight edges W �
II ¼ 0. In Eqs.

(19)–(22) the operators become

L11ð Þ ¼ c110
o4

ox4
þ 2c112b

2 o4

ox2 oy2
þ c114b

4 o4

oy4

L12ð Þ ¼ c120
o3

ox3
þ c122b

2 o3

oxoy2

L13ð Þ ¼ c131b
o3

ox2 oy
þ c133b

3 o3

oy3

L14ð Þ ¼ c140
o4

ox4
þ 2c142b

2 o4

ox2 oy2
þ c144b

4 o4

oy4

L21ð Þ ¼ o4

ox4
þ 2c212b

2 o4

ox2 oy2
þ c214b

4 o4

oy4

L22ð Þ ¼ c220
o3

ox3
þ c222b

2 o3

oxoy2

L23ð Þ ¼ c231b
o3

ox2 oy
þ c233b

3 o3

oy3

L24ð Þ ¼ c240
o4

ox4
þ 2c242b

2 o4

ox2 oy2
þ c244b

4 o4

oy4

L31ð Þ ¼ c31
o

ox
þ c310

o3

ox3
þ c312b

2 o3

oxoy2

L32ð Þ ¼ c31 � c320
o2

ox2
� c322b

2 o2

oy2

L33ð Þ ¼ c331b
o2

oxoy

L34ð Þ ¼ L22ð Þ

L41ð Þ ¼ c41b
o

oy
þ c411b

o3

ox2 oy
þ c413b

3 o3

oy3

L42ð Þ ¼ L33ð Þ

L43ð Þ ¼ c41 � c430
o2

ox2
� c432b

2 o2

oy2

L44ð Þ ¼ L23ð Þ

Lð Þ ¼ o2

ox2
o2

oy2
� 2

o2

oxoy
o2

oxoy
þ o2

oy2
o2

ox2
ð23Þ
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Because of the definition of e given in Eq. (17), for most of the FGMs ½D�
11D

�
22A

�
11A

�
22�

1=4 ffi 0:3t, hence
when Z ¼ ða2=RtÞ > 2:96, we have e < 1. In particular, for homogeneous isotropic cylindrical panels, we

have e ¼ p2=ZVb2½12ð1� m2Þ�1=2, where ZVð¼ b2=RtÞ should be greater than 11.95 in the case of classical

linear buckling analysis (see Vol�mir, 1967), and in such a case e < 1 is always valid unless b < 0:5. When
e < 1, Eqs. (19)–(22) are equations of the boundary layer type, from which nonlinear prebuckling defor-

mations, large deflections in the postbuckling range and initial geometric imperfections of the panel can be

considered simultaneously.

The boundary conditions of Eqs. (12a)–(12g) become

x ¼ 0; p:

W ¼ V ¼ Wy ¼ 0 ð24aÞ

Mx ¼ Px ¼ 0 ð24bÞ

1

p

Z p

0

b2 o
2F
oy2

dy þ 2kpe ¼ 0 ð24cÞ

y ¼ 0; p:

W ¼ Wx ¼ 0 ð24dÞ

F;xy ¼ 0 ð24eÞZ p

0

o2F
ox2

dx ¼ 0 ðmovable edgesÞ ð24fÞ

V ¼ 0 ðimmovable edgesÞ ð24gÞ

The in-plane boundary condition expressed by Eq. (13b) becomesZ p

0

Z p

0

o2F
ox2

�"
� c5b

2 o
2F
oy2

�
þ c24 c220

oWx

ox

�
þ c522b

oWy

oy

�
� ec24 c240

o2W
ox2

�
þ c622b

2 o
2W
oy2

�

þ c24W � 1

2
c24b

2 oW
oy

� �2

� c24b
2 oW
oy

oW �
T

oy
þ eðcT2 � c5cT1ÞDT

#
dy dx ¼ 0 ð25Þ

The unit end-shortening relationship becomes

dp ¼ � 1

2p2c24
e�1

Z p

0

Z p

0

c224b
2 o

2F
oy2

�"
� c5

o2F
ox2

�
þ c24 c511

oWx

ox

�
þ c233b

oWy

oy

�

� ec24 c611
o2W
ox2

�
þ c244b

2 o
2W
oy2

�
� 1

2
c24

oW
ox

� �2

� c24
oW
ox

oW �
T

ox
þ eðc224cT1 � c5cT2ÞDT

#
dxdy ¼ 0

ð26Þ

By virtue of the fact that DT is assumed to be uniform, the thermal coupling in Eqs. (5)–(8) vanishes, but

terms in DT intervene in Eqs. (25) and (26).

Applying Eqs. (19)–(23), (24a)–(24g), (25), (26), the postbuckling behavior of perfect and imperfect,
FGM cylindrical panels subjected to axial compression and under thermal environments is determined by a

singular perturbation technique. The essence of this procedure, in the present case, is to assume that
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W ¼ wðx; y; eÞ þ eWW ðx; n; y; eÞ þ bWW ðx; 1; y; eÞ
F ¼ f ðx; y; eÞ þ eFF ðx; n; y; eÞ þ bFF ðx; 1; y; eÞ
Wx ¼ wxðx; y; eÞ þ eWWxðx; n; y; eÞ þ bWWxðx; 1; y; eÞ
Wy ¼ wyðx; y; eÞ þ eWWyðx; n; y; eÞ þ bWWyðx; 1; y; eÞ

ð27Þ

where e is a small perturbation parameter (under the limitation of Z > 2:96) and wðx; y; eÞ, f ðx; y; eÞ,
wxðx; y; eÞ, wyðx; y; eÞ are called outer solutions or regular solutions of the panel, eWW ðx; n; y; eÞ, eFF ðx; n; y; eÞ,eWWxðx; n; y; eÞ, eWWyðx; n; y; eÞ and bWW ðx; 1; y; eÞ, bFF ðx; 1; y; eÞ, bWWxðx; 1; y; eÞ, bWWyðx; 1; y; eÞ are the boundary layer

solutions near the x ¼ 0 and x ¼ p edges, respectively, and n and 1 are the boundary layer variables, defined

as

n ¼ x=
ffiffi
e

p
; 1 ¼ ðp � xÞ=

ffiffi
e

p
ð28Þ

(This means for homogeneous isotropic cylindrical panels the width of the boundary layers is of order
ffiffiffiffiffi
Rt

p
.)

In Eq. (27) the regular and boundary layer solutions are taken in the form of perturbation expansions as

wðx; y; eÞ ¼
X
j¼1

ejwjðx; yÞ; f ðx; y; eÞ ¼
X
j¼0

ejfiðx; yÞ

wxðx; y; eÞ ¼
X
j¼1

ejðwxÞjðx; yÞ; wyðx; y; eÞ ¼
X
j¼1

ejðwyÞjðx; yÞ
ð29aÞ

eWW ðx; n; y; eÞ ¼
X
j¼0

ejþ1 eWWjþ1ðx; n; yÞ; eFF ðx; n; y; eÞ ¼ X
j¼0

ejþ2eFFjþ2ðx; n; yÞ

eWWxðx; n; y; eÞ ¼
X
j¼0

ejþ3=2ð eWWxÞjþ3=2ðx; n; yÞ; eWWyðx; n; y; eÞ ¼
X
j¼0

ejþ2ð eWWyÞjþ2ðx; n; yÞ
ð29bÞ

bWW ðx; 1; y; eÞ ¼
X
j¼0

ejþ1 bWWjþ1ðx; 1; yÞ; bFF ðx; 1; y; eÞ ¼ X
j¼0

ejþ2bFFjþ2ðx; 1; yÞ

ŴWxðx; 1; y; eÞ ¼
X
j¼0

ejþ3=2ð bWWxÞjþ3=2ðx; 1; yÞ; bWWyðx; 1; y; eÞ ¼
X
j¼0

ejþ2ð bWWyÞjþ2ðx; 1; yÞ
ð29cÞ

The initial buckling mode is assumed to have the form

w2ðx; yÞ ¼ Að2Þ
11 sinmx sin ny ð30Þ

It should be remembered that, because of the definition of W given in Eq. (17), this means that w2ðx; yÞ
corresponds to �ww1ðX ; Y Þ and the initial geometric imperfection is assumed to have the similar form

W �ðx; y; eÞ ¼ e2a�11 sinmx sin ny ð31Þ

Substituting Eqs. (27), (28), (29a)–(29c) into Eqs. (19)–(22), and collecting terms of the same order of e, we
obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively.

Then using Eqs. (30) and (31) to solve these perturbation equations of each order, and matching the

regular solutions with the boundary layer solutions at each end of the panel, so that the asymptotic so-
lutions are constructed as
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It is noted that in Eq. (33) for the case of movable straight edges bð4Þ00 ¼ 0. In order to satisfy boundary

condition w1 ¼ 0 on y ¼ 0, p straight edges, Að1Þ
00 in Eq. (32) is expanded by Fourier sine series in the y-

direction according to

4

p
Að1Þ
00

X
j¼1;3;...

1

j
sin jy ð36Þ

and remain a constant in the x-direction. Because of Eq. (32), the prebuckling deformation of the panel is

nonlinear.
Note that Eqs. (32)–(35) are somewhat different from those of axially compressed cylindrical shells

(Shen, 2002a). All of the coefficients in Eqs. (32)–(35) are related and can be expressed in terms of Að2Þ
11 , but

for the sake of brevity the detailed expressions are not shown, whereas a and / are given in detail in

Appendix A.

Next, upon substitution of Eqs. (32)–(35) into the boundary condition (24c) and into Eqs. (25) and (26),

the postbuckling equilibrium paths can be written as

kp ¼ kð0Þ
p � kð2Þ

p ðAð2Þ
11 eÞ2 þ kð4Þ

p ðAð2Þ
11 eÞ4 þ � � � ð37Þ

and

dp ¼ dð0Þ
p � dðTÞ

p þ dð2Þ
p ðAð2Þ

11 eÞ2 þ dð4Þ
p ðAð2Þ

11 eÞ4 þ � � � ð38Þ
In Eqs. (37) and (38), (Að2Þ

11 e) is taken as the second perturbation parameter relating to the dimensionless

maximum deflection. If the maximum deflection is assumed to be at the point ðx; yÞ ¼ ðp=2m; p=2nÞ, from
Eq. (32) one has

Að2Þ
11 e ¼ Wm � H3W 2

m þ � � � ð39aÞ
where Wm is the dimensionless form of maximum deflection of the panel that can be written as

Wm ¼ 1

C3

t

D�
11D

�
22A

�
11A

�
22½ �1=4

W
t

"
þ H4

#
ð39bÞ

All symbols used in Eqs. (37)–(39b) are also described in detail in Appendix A. It is noted that now kðiÞ
p and

dðiÞ
p (i ¼ 0; 2; 4; . . .) are all functions of temperature and position.

Eqs. (37)–(39b) are employed to obtain numerical results for full nonlinear postbuckling load–shortening

or load–deflection curves of FGM cylindrical panels subjected to axial compression in thermal environ-

ments. The initial buckling load of a perfect panel can readily be obtained numerically, by setting W
�
=t ¼ 0,

while taking W =t ¼ 0 (note that Wm 6¼ 0Þ. In this case, the minimum buckling load is determined by con-
sidering Eq. (37) for various values of the buckling mode (m; n), which determine the number of half-waves

in the X - and Y -directions.

4. Numerical results and comments

Numerical results are presented in this section for FGM cylindrical panels with two constituent mate-

rials. Two sets of material mixture are considered. One is silicon nitride and stainless steel, referred to as
Si3N4/SUS304, and the other is zirconium oxide and titanium alloy, referred to as ZrO2/Ti–6Al–4V.

However, the analysis is equally applicable to other types of FGMs. The material properties P , such as

Young�s modulus E and thermal expansion coefficient a, can be expressed as a function of temperature (see

Touloukian, 1967) as

P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T 2 þ P3T 3Þ ð40Þ
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in which T ¼ T0 þ DT and T0 ¼ 300 K (room temperature), P0, P�1, P1, P2 and P3 are the coefficients of

temperature T (K) and are unique to the constituent materials. Typical values for Young�s modulus E (in

Pa) and thermal expansion coefficient a (in K�1) of these materials are listed in Table 1 (from Reddy and

Chin, 1998). Poisson�s ratio m is assumed to be a constant, and m ¼ 0:28.
As part of the validation of the present method, the buckling loads for isotropic cylindrical panels

subjected to axial compression are compared in Tables 2 and 3 with the numerical and analytical results

based on the first order shear deformation theory obtained by Jaunky and Knight (1999), and the classical

shell theory solutions of Turvey (1977). These two comparisons show that the results from the method

presented agree well with the comparator solutions.

The buckling loads Pcr (in MN) for perfect Si3N4/SUS304 and ZrO2/Ti–6Al–4V cylindrical panels with

different values of volume fraction index N subjected to axial compression and under thermal environ-

mental conditions are compared in Tables 4 and 5. In computation, the panel length-to-width ratio
a=b ¼ 1:2 and b ¼ 0:3 m. It can be seen that, for the Si3N4/SUS304 cylindrical panel, a fully metallic panel

(N ¼ 0) has lowest buckling load and that the buckling load is increased as N increases. It can also be seen

that the buckling load of the ZrO2/Ti–6Al–4V cylindrical panel is lower than that of the Si3N4/SUS304

panel. Usually, the buckling loads are reduced with increases in temperature. In contrast, for ZrO2/Ti–6Al–

4V cylindrical panel (a=R ¼ 0:5 and b=t ¼ 60) the buckling load under thermal environmental condition

DT ¼ 200 K is higher than that under thermal environmental condition DT ¼ 0 K, when N > 3. Therefore,

Table 1

Temperature-dependent coefficients for ceramics and metals, from Reddy and Chin (1998)

Materials P0 P�1 P1 P2 P3

Zirconia E 244.27eþ9 0 )1.371e)3 1.214e)6 )3.681e)10
a 12.766e)6 0 )1.491e)3 1.006e)5 )6.778e)11

Silicon nitride E 348.43eþ9 0 )3.070e)4 2.160e)7 )8.946e)11
a 5.8723e)6 0 9.095e)4 0 0

Ti–6Al–4V E 122.56eþ9 0 )4.586e)4 0 0

a 7.5788e)6 0 6.638e)4 )3.147e)6 0

Stainless steel E 201.04eþ9 0 3.079e)4 )6.534e)7 0

a 12.330e)6 0 8.086e)4 0 0

Table 3

Comparisons of buckling loads Nx=ER for isotropic cylindrical panels under axial compression (v ¼ 0:3)

a=b a=R b=t Turvey (1977) CLT Present HSDT

4.0 1.0 25 0.73675e)4 0.71410e)4 (3,l)a

1.333 1.0 75 0.60523e)4 0.58737e)4 (2,2)

a The number in brackets indicate the buckling mode (m; n).

Table 2

Comparisons of buckling loads Ncr (in lbs/in) for isotropic cylindrical panels under axial compression (E ¼ 10� 106 psi and m ¼ 0:3)

a=b a=R b=t Jaunky and Knight (1999) Present HSDT

FEM Donnell-theory

3.1831 10 78.5398 41945.4 53080.6 51419.68

3.1831 10 157.0796 12360.0 13834.1 13119.99

3.1831 10 314.1593 3358.8 3549.9 3228.12

1.5915 5 78.5398 50545.6 54817.2 53863.71

1.5915 5 157.0796 27020.0 28259.2 26239.99

0.7958 2.5 314.1593 14204.4 14378.4 13391.37
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Si3N4/SUS304 cylindrical panels are considered in the parametric study only. Typical results are shown in
Figs. 2–7. It is mentioned that in all figures W

�
=t denotes the dimensionless maximum initial geometric

imperfection of the panel.

Fig. 2 gives the postbuckling load–shortening and load–deflection curves for Si3N4/SUS304 cylindrical

panels with volume fraction index N ¼ 2:0 subjected to axial compression and under three sets of thermal

environmental conditions, i.e. DT ¼ 0, 100 and 200 K. It can be seen that the well-known ‘‘snap-through’’

behavior of the panel occurs and the imperfection sensitivity can be predicted. It can also be found that the

buckling loads and postbuckling strength are reduced with increases in temperature, but the postbuckling

path becomes higher when the deflection is sufficiently large.
Fig. 3 gives the postbuckling load–shortening and load–deflection curves for Si3N4/SUS304 cylindrical

panels with different values of volume fraction index N (¼ 0.2, 2.0 and 10.0) subjected to axial compression

and under thermal environmental condition DT ¼ 200 K. It can be seen that the panel has lower buckling

load and postbuckling path when it has lower volume fraction.

Fig. 4 shows the effect of width-to-thickness ratio b=t (¼ 20, 30 and 60) on the postbuckling behavior of

Si3N4/SUS304 cylindrical panels with volume fraction index N ¼ 2:0 subjected to axial compression and

under thermal environmental condition DT ¼ 200 K. Then Fig. 5 shows the effect of length-to-width ratio

a=b (¼ 1.2 and 2.5) on the postbuckling behavior of Si3N4/SUS304 cylindrical panels under the same

Table 4

Comparisons of buckling loads Pcr (in MN) for perfect Si3N4/SUS304 cylindrical panels subjected to axial compression and in thermal

environments (a=b ¼ 1:2, b ¼ 0:3 m and T0 ¼ 300 K)

N a=R ¼ 0:5, b=t ¼ 30 a=R ¼ 1:0, b=t ¼ 30 a=R ¼ 0:5, b=t ¼ 60

DT ¼ 0 K DT ¼ 200 K DT ¼ 0 K DT ¼ 200 K DT ¼ 0 K DT ¼ 200 K

0 4.9565 (1,1)a 4.0541 10.2899 (3,1) 9.9258 (2,2) 1.2968 (1,3) 1.0906 (2,2)

0.2 5.4489 4.5268 11.3137 11.0764 (2,2) 1.4261 1.1919

0.5 5.8836 4.9672 12.2149 12.0141 (3,1) 1.5396 1.2778

1.0 6.2758 5.3811 13.0261 12.7691 (3,1) 1.6413 1.3579

2.0 6.6488 5.7845 13.7970 13.4870 (3,1) 1.7377 1.4429

3.0 6.8431 5.9947 14.1989 13.8614 (3,1) 1.7881 1.4933

5.0 7.0594 6.2257 14.6475 14.2797 (3,1) 1.8445 1.5561

8.0 7.2280 6.4023 14.9982 14.6071 (3,1) 1.8889 1.6098

10.0 7.2968 6.4734 15.1416 14.7412 (3,1) 1.9071 1.6328

a The number in brackets indicate the buckling mode (m; n).

Table 5

Comparisons of buckling loads Pcr (in MN) for perfect ZrO2/Ti–6A1–4V cylindrical panels subjected to axial compression and in

thermal environments (a=b ¼ 1:2, b ¼ 0:3 m and T0 ¼ 300 K)

N a=R ¼ 0:5, b=t ¼ 30 a=R ¼ 1:0, b=t ¼ 30 a=R ¼ 0:5, b=t ¼ 60

DT ¼ 0 K DT ¼ 200 K DT ¼ 0 K DT ¼ 200 K DT ¼ 0 K DT ¼ 200 K

0 2.5213 (1,1)a 2.1801 5.2343 (3,1) 4.6950 (3,1) 0.6596 (3,1) 0.5983 (2,2)

0.2 2.7891 2.2524 5.7912 5.1472 (3,1) 0.7300 0.5795

0.5 3.0253 2.2821 6.2808 5.5604 (2,2) 0.7916 0.5941

1.0 3.2386 2.2995 6.7219 5.6574 (2,2) 0.8469 0.6734

2.0 3.4420 2.3338 7.1422 5.7262 (2,2) 0.8995 0.8196

3.0 3.5481 2.3665 7.3618 5.7730 (2,2) 0.9270 0.9125

5.0 3.6663 2.4145 7.6070 5.8523 (2,2) 0.9579 1.0147

8.0 3.7584 2.4572 7.7985 5.9402 (2,2) 0.9821 1.0867

10.0 3.7960 2.4752 7.8768 5.9828 (2,2) 0.9920 1.1136

a The number in brackets indicate the buckling mode (m; n).
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condition. The results show that the buckling load is decreased as b=t increases from 20 to 60, or as a=b
increases from 1.2 to 2.5 and the postbuckling equilibrium path becomes significantly lower. Changes of

buckling mode can be seen for the panel with b=t ¼ 60 or a=b ¼ 2:5 and postbuckling equilibrium path

becomes stable.

Fig. 2. Effect of temperature rise on the postbucking behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening and (b) load–

deflection.

Fig. 3. Effect of volume fraction index N on the postbuckling behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening and

(b) load–deflection.
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Fig. 6 shows the effect of length-to-radius ratio a=R (¼ 0.2, 0.5 and 0.75) on the postbuckling behavior of
Si3N4/SUS304 cylindrical panels with volume fraction index N ¼ 2:0 subjected to axial compression and

Fig. 4. Effect of width-to-thickness ratio on the postbuckling behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening and

(b) load–deflection.

Fig. 5. Effect of length-to-width ratio on the postbuckling behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening and

(b) load–deflection.
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under thermal environmental condition DT ¼ 200 K. The results show that the panel with a=R ¼ 0:2 has
stable postbuckling equilibrium path due to its flatted configuration, while the panel with a=R ¼ 0:75 has

higher buckling load than others, and has considerable postbuckling strength.

Fig. 6. Effect of length-to-radius ratio on the postbuckling behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening and

(b) load–deflection.

Fig. 7. Effect of in-plane boundary conditions on the postbuckling behavior of Si3N4/SUS304 cylindrical panels: (a) load–shortening

and (b) load–deflection.
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Fig. 7 compares postbuckling load–shortening and load–deflection curves for Si3N4/SUS304 cylindrical

panels under two cases of the in-plane boundary conditions. It is noted that in the case of immovable edges

the postbuckling path is no longer of the bifurcational type.

Postbuckling load–shortening and load–deflection curves for imperfect (W
�
=t ¼ 0:05) as well as perfect

(W
�
=t ¼ 0) panels are plotted in each of Figs. 2–7. The imperfection sensitivity k� is calculated and com-

pared in Table 6 for Si3N4/SUS304 cylindrical panels subjected to axial compression and under thermal

environmental condition DT ¼ 0 K. Here, k� is the maximum value of rx for the imperfect panel, made

dimensionless by dividing by the critical value of rx for the perfect panel as shown in Table 4. These results

show that the volume fraction index N has a very small effect on the imperfection sensitivity of the panel.

5. Concluding remarks

In order to assess the effects of temperature rise and volume fraction index on the postbuckling behavior

of FGM cylindrical panels subjected to axial compression, a fully nonlinear postbuckling analysis is pre-

sented based on Reddy�s higher order shear deformation shell theory with a von K�aarm�aan–Donnell-type of

kinematic nonlinearity. Material properties are assumed to be temperature dependent, and graded in the
thickness direction according to a simple power law distribution in terms of the volume fractions of the

constituents. The boundary layer theory of shell buckling has been extended to the case of FGM cylindrical

panels subjected to compressive axial loads in thermal environments. A singular perturbation technique is

employed to determine buckling loads and postbuckling equilibrium paths. Numerical results are for Si3N4/

SUS304 and ZrO2/Ti–6Al–4V cylindrical panels. In effect, the results provide information about post-

buckling behaviors of FGM panels for different proportions of the ceramic and metal. The results reveal

that the axially loaded FGM panel displays a complex form of postbuckling behavior which depends on the

properties of the panel itself. They also confirm that the characteristics of postbuckling are significantly
influenced by temperature rise, volume fraction distribution, panel geometric parameters as well as initial

geometric imperfections.
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Table 6

Imperfection sensitivity k� for imperfect Si3N4/SUS304 cylindrical panels (a=b ¼ 1:2, a=R ¼ 0:5, b=t ¼ 30) with different values of

volume fraction index N and under thermal environmental condition (T0 ¼ 300 K and DT ¼ 0 K)

W
�
=t N

0.2 2.0 10.0

0 1.0 1.0 1.0

0.02 0.882 0.880 0.880

0.04 0.799 0.795 0.795

0.06 0.735 0.731 0.731

0.08 0.682 0.679 0.679

0.10 0.638 0.634 0.634

0.12 0.599 0.595 0.595

0.14 0.565 – –
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Appendix A

In Eq. (18)
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and in Eqs. (37)–(39b)
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2
24

m6ð2þ lÞ
2g09g206

e�1

(
þ c14c24

m4

2g09g06

g05
g06

1

1þ l

�
þ g07
g06

ð1þ lÞ þ g12ð1þ lÞ � 1

2

ð2þ lÞ
ð1þ lÞ g11

�
� C22

þ c14c
2
24

m2g11
2g09

g05
g06

1

1þ l

�
� g07
g06

� g12
�
e þ c14c

2
24

m2g05
2g09g06

2ð1þ lÞ2 � ð1þ 2lÞ
2ð1þ lÞ2

g14

"
þ l
1þ l

g05
g06

#
ð2þ lÞe

þ c24
m2n4b4

g06

ð5þ 11l þ 4l2Þg06 þ 8m4ð1þ lÞð2þ lÞg10
ð1þ lÞg06 � 4m4g10

e

)

kð4Þ
p ¼ 1

128
c214c

3
24

m10ð1þ lÞ
g209g

3
06

ð6þ 6l þ l2Þg136 þ ð1þ lÞð6� l2Þg06
g136 � ð1þ lÞg06

e�1 þ C44

dð0Þ
p ¼ 1

c24
c224

�
� 2

p
c25
c24

abð2Þ01

�
� /bð2Þ10

�
e1=2

�
kp þ

c25
2pc224

b11
a

e1=2
� �

k2
p

dð2Þ
p ¼ 1

16
d22ð1

�
þ 2lÞe � 2g05e2 þ

g205
m2

e3
�

dð4Þ
p ¼ 1

128

b11
32pa

c214c
2
24

m8ð1þ lÞ2

n4b4g209g
2
06

e�3=2

(
þ d44 þ m2n4b4ð1þ lÞ2e3 g06ð1þ 2lÞ þ 8m4ð1þ lÞg10

g06ð1þ lÞ � 4m4g10

� �2)

dðTÞ
p ¼ 1

2c24
½ðc224cT1 � c5cT2ÞDT � ðA:2Þ

in the above equations (with other gij and gijk are defined as in Shen (2002c))
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b1 ¼
c14c24c

2
320

g16

� �1=2
; c1 ¼ c14c24c320

g15
2g16

; C3 ¼ 1� g05
m2

e

a ¼ ½ðb1 � c1Þ=2�1=2; / ¼ ½ðb1 þ c1Þ=2�1=2; l ¼ ða�11 þ A�
IIÞ=A

ð2Þ
11

að1Þ01 ¼ 1; að1Þ10 ¼ g17; bð2Þ01 ¼ c24g19; bð2Þ10 ¼ c24g20

b11 ¼
1

b1
að1Þ10

� �2

/2b1

�
þ að1Þ10 2a/c1 þ 2a4

�
� a2/2 þ /4

��

g17 ¼ �ðc310 þ c14c24c220c240Þc1 þ c14c24c220
2a/ðc310 þ c14c24c220c240Þ

g19 ¼
c310c220 � c320c240
c320 þ c14c24c

2
220

� 2c1ðc310 þ c14c24c220c240Þ þ c14c24c220c320
ðc320 þ c14c24c

2
220Þðc310 þ c14c24c220c240Þb21

g20 ¼ � 1

2a/ðc310 þ c14c24c220c240Þðc320 þ c14c24c
2
220Þ

c310 c320
��

þ c14c24c
2
220

�
� 2ðc310 þ c14c24c220c240Þ

c21
b21

� c14c24c220c320
c1
b21

þ ðc310 þ c14c24c220c240Þðc310c220 � c320c240Þc1
�

ðA:3Þ

for the case of immovable straight edges

A�
II ¼

2c14c24n
2b2

p2mng08
ð1þ 2lÞ Að2Þ

11

� �2

; C22 ¼
1

4
c24g13

m4 þ 2c224n
4b4

� �
m2

ð1þ 2lÞe;

C44 ¼
1

128

c214c
2
24m

6ð1þ lÞ2

4g209g
2
06

e�1; d22 ¼ m2 þ c5n
2b2; d44 ¼

c5c
2
14c24
4

m8ð1þ lÞ2

n2b2g209g
2
06

e�1 ðA:4Þ

and for the case of movable straight edges

A�
II ¼ 0; C22 ¼ 1

4
c24m

2g13ð1þ 2lÞe; C44 ¼ 0; d22 ¼ m2; d44 ¼ 0 ðA:5Þ
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