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Abstract

A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial
compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the
thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents.
The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher order shear defor-
mation shell theory with a von Kdarman-Donnell-type of kinematic nonlinearity and including thermal effects. Two
cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric
imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the
effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric im-
perfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A
singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The
numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded
cylindrical panels with two constituent materials and under different sets of thermal environments. The influences
played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse
shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have received considerable attention in many engineering ap-
plications since they were first reported in 1984 in Japan (see Koizumi, 1993). FGMs are composite
materials, microscopically inhomogeneous, in which the mechanical properties vary smoothly and con-
tinuously from one surface to the other. This is achieved by gradually varying the volume fraction of the
constituent materials. FGMs were initially designed as thermal barrier materials for aerospace structural
applications and fusion reactors. FGMs are now developed for general use as structural components in
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extremely high temperature environments. Unlike fiber-matrix composites which have a mismatch of
mechanical properties across an interface of two discrete materials bonded together and may result in
debonding at high temperatures, FGMs have the advantage of being able to withstand high temperature
environments while maintaining their structural integrity. With the increased usage of these materials, it is
important to understand the buckling and postbuckling behaviors of functionally graded cylindrical panels.

Many postbuckling studies, based on classical shell theory, of composite laminated thin cylindrical
panels subjected to mechanical or thermal loading are available in the literature (see, for example Zhang
and Matthews, 1985; Huang and Taucher, 1991). Relatively few studies involving the application of shear
deformation shell theory to postbuckling analysis can be found in Chia (1987); Kweon and Hong (1994);
Kweon et al. (1995); Chang and Librescu (1995), and Librescu et al. (2000). In these studies the material
properties are considered to be independent of temperature. However, investigations of FGM cylindrical
shells under mechanical or thermal loading are limited in number. Loy et al. (1999) gave a free vibration
analysis of simply supported FGM cylindrical thin shells. This work is then extended to the case of FGM
cylindrical thin shells under various boundary conditions by Pradhan et al. (2000). Ng et al. (2001) studied
the parametric resonance or dynamic stability of FGM cylindrical thin shells under periodic axial loading.
In the forgoing studies, Reddy and his co-workers developed a simple theory, in which the material
properties are graded in the thickness direction according to a volume fraction power law distribution, but
their numerical results were only for a simple case of an FGM shell in a fixed thermal environment. Re-
cently, Shen (2002b) gave a postbuckling analysis of FGM cylindrical thin shells subjected to axial com-
pression in thermal environments. Note that in the above studies the shells are considered as being relatively
thin and therefore the transverse shear deformation is usually not accounted for.

It has been shown in Shen and Chen (1988, 1990) that in shell buckling, there is a boundary layer
phenomenon where prebuckling and buckling displacement vary rapidly. They suggested a boundary layer
theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections
in the postbuckling range, and initial geometric imperfections of the shell. Based on this theory, the
postbuckling analyses for perfect and imperfect, unstiffened and stiffened, thin and moderately thick,
isotropic and multilayered cylindrical shells under various loading cases have been performed by Shen and
Chen (1990) and Shen (1997a,b,c, 1998, 2001a,b, 2002a,b). The present paper extends the previous works to
the case of FGM cylindrical panels of finite length with two constituent materials subjected to compressive
axial loads in thermal environments. The material properties are assumed to be temperature dependent, and
graded in thickness direction according to a volume fraction power law distribution. The governing
equations are based on Reddy’s higher order shear deformation shell theory with a von Karman-Donnell-
type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed
to determine the buckling loads and postbuckling equilibrium paths. The nonlinear prebuckling defor-
mations and initial geometric imperfections of the panel are both taken into account but, for simplicity, the
form of initial geometric imperfection is assumed to be the same as the initial buckling mode of the panel.
The numerical illustrations show the full nonlinear postbuckling response of FGM cylindrical panels
subjected to axial compression and under different sets of environmental conditions.

2. Theoretical development

Consider an FGM cylindrical panel made from a mixture of ceramics and metals is subjected to axial
compressive load Py combined with thermal loads. The panel is referred to a coordinate system (X, Y, Z) in
which X and Y are in the axial and circumferential directions of the panel and Z is in the direction of the
inward normal to the middle surface, the corresponding displacement designated by U, ¥ and W. ¥, and

¥, are the rotations of normals to the middle surface with respect to the Y- and X-axes, respectively. The
origin of the coordinate system is located at the corner of the panel on the middle plane. R is the radius of
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Fig. 1. Geometry and coordinate system of an FGM cylindrical panel.

curvature, ¢ the panel thickness, a the length in the X-direction, and b the length in the Y-direction, as
shown in Fig. 1. The panel is assumed to be geometrically imperfect. Denoting the initial geometric im-
perfection by W' (X, Y), let W(X,Y) be the additional deflection and F(X, ¥) be the stress function for the
stress resultants defined by N, =F ,,, N, =F,, and N,, = —F ,,, where a comma denotes partial differ-
entiation with respect to the corresponding coordinates.

We assume that the composition is varied from the outer to the inner surface, i.e. the outer surface

(Z = —t/2) of the panel is ceramic-rich whereas the inner surface (Z = ¢/2) is metal-rich. In such a way, the
effective material properties P, like Young’s modulus E or thermal expansion coefficient o, can be expressed as
P=PV.+ PV (1)

in which P, and P, denote the temperature-dependent properties of the outer and inner surfaces of the panel,
respectively, and 7, and V,, are the ceramic and metal volume fractions and are related by

Vet Vi =1 (2)
We assume the volume fraction V;, follows a simple power law as
2Z+1\"
Vin = 3
(%) )

where volume fraction index N dictates the material variation profile through the panel thickness and may
be varied to obtain the optimum distribution of component materials. It is noted that similar definition can
be found in Ng et al. (2001), but is for V..

From Egs. (1)-(3), the effective Young’s modulus E and thermal expansion coefficient o« of an FGM
cylindrical panel can be written as

2Z 4\ 2Z 4+ t\"
E_(EbEl)< 5 ) + E,, oc(ocboct)<T) + o 4)

It is evident that when Z = —¢/2, E = E; and o = o, and when Z = ¢/2, E = Ey, and o = o,. It is assumed
that E,, Ey, o, and oy, are functions of temperature, but Poisson’s ratio v depends weakly on temperature
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change and is assumed to be a constant, as shown in Section 4, so that £ and « are functions of temperature
and position.

Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the
transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same dependent unknowns as in the first order shear deformation theory. Based on Reddy’s
higher order shear deformation theory with von Karman—Donnell-type kinematic relations and including
thermal effects, the governing differential equations for an FGM cylindrical panel are derived and can be
expressed in terms of a stress function F, two rotations ¥, and ?y, and transverse displacement W, along
with initial geometric imperfection . They are

Lu(W) = Lp(P) — Lis(V,) + Lis(F) — Lis(N') — Lys(M') — 1%?’“ =L(W+W"F) (5)
Lo1(F) + Ln(F,) + Los(P,) — Loy(W) — Los(N") +1%W,xx = —_L(W+2W W) (6)
L) + Lao(P,) = Ln(Py) + Laa(F) = Lys(N') = L3s(8") = 0 (7)
Lu(W) — Lo() + Lis(P,) + Las(F) — Lis(N') — Lus(S') = 0 (8)

where linear operators Z,-j( ) and nonlinear operator L( ) are defined as in Shen (2002c).

It is noted that these panel equations show thermal coupling as well as the interaction of stretching and
bending. Also, note that Egs. (5)—(8) are identical to those of unsymmetric cross-ply laminated cylindrical
shells under thermomechanical loading.

The forces, moments and higher order moments caused by elevated temperature are defined by

T —T 5T

'N}% M% P}% 2 A,
~T 7L Bl 3
N, M, P ‘/,/2“’2’2) A | ATdz ®a)
_Nxv Mxy PXV v
S o (7]
=T —T —T
Sy == My - g y (9b)
T MT =T
L Sxy xy xy 4
where AT is temperature rise from some reference temperature at which there are no thermal strains, and
[ A, ] On On O |1 0O o
Ay =—|0n 0O»n Ox 0 1 L{} (10)
| Ay | O Ox O] [0 O
where the thermal expansion coefficient « is given in detail in Eq. (4), and
E vE E
On =0» =2 On =2 O16 = O s Ou = Oss = Oeo 20+ ) (11)

in which E is also given in detail in Eq. (4),and vary through the panel thickness.

All four edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges,
two cases, Case 1 (referred to herein as movable edges) and Case 2 (referred to herein as immovable edges),
will be considered.
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Case 1. The edges are simply supported and freely movable in the X- and Y-directions, respectively.

Case 2: All four edges are simply supported. Uniaxial edge loads are acting in the X-direction. The
curved edges (X = 0, a) are considered freely movable (in the in-plane direction), the remaining two straight
edges being unloaded and immovable (in the Y-direction).

For both cases the associated boundary conditions could be found in Chang and Librescu (1995). In the
present paper, they are

X=0,a
W=V=%=0 (12a)
M. =P.=0 (12b)
b
/ dY +6,tb =0 (12¢)
0
Y =0,2:
W=" =0 (12d)
ny =0 (126)
/ N,dX =0 (movable edges) (12f)
0
7V =0 (immovable edges) (12g)

where o, is the average axial compressive stress, M, is the bending moment and P, is higher order moment
as defined in Reddy and Liu (1985). The condition expressing the immovability condition 7 =0 (on
Y =0, b) is fulfilled on the average sense as (Chang and Librescu, 1995)

//—deX 0 (13a)

F _O®F (. 4 N\oV. (.. 4 _\oP, 4 [ OW _ &W
//[226)(2 126)’2+<Bz'3t2E2'>aX+<BZZ3t2E22>aY3t2(E216X2 Ezzayz>

AW\ oW oW = -
+§ ( ) = 37— (4N + 45N

5 Ty dydx =0 (13b)

The average end-shortening relationship is

—“= Y
e / / Uixd
F O°F . i alp . )\ 97,
11 2 12 2 + Bll - Ell Bl2 E]2
oY oX 32 6X 372 oY

4 *aZW COWN 1w\ ewow ;.. 1 .
32 (EUW"‘EUW) ) (&) T ax (A“Nx +A12Ny> dxdy (14)
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In Egs. (13b), (14) and Eq. (17) below, the reduced stiffness matrices [4;

il Byl (D3l [EG)s [F] and [H]
(i,j = 1,2,6) are functions of temperature and position, defined by

A'=A", BB=-A"'B, DD=D-BA'B, EE=—-A"'E, FF=F-EA'B,
H =H-EA'E (15)

where 4;;, Bj; etc., are the panel stiffnesses, defined by

t/2
(4ij, Bij, Dij, Eyy, Fj, Hyy) :/ (0)(1,2,22,72°,2*, 72 dz, i,j=1,2,6 (16a)
—t/2
t/2
(A, Dyj, Fy) :/ (0)(1,2%,24dz, i,j=4,5 (16b)
—t/2

3. Analytical method and asymptotic solutions

Having developed the theory, we now try to solve Egs. (5)—(8) with boundary conditions (12a)—(12g).
Before proceeding, it is convenient first to define the following dimensionless quantities (with y,; in Egs.
(23), (25) and (26) below are defined as in Shen (2002c))

x=nX/a, y=n¥/b, B=a/b, Z=d*/Rt, &= (n’R/a*)|D}Did’ 45]",
(W, W) = (W, )/ (D}, Dypd; A3) ", F = &F/(D}, D3],
(¥, ) = & (P, 7)) (a/n) /(D] Dy A3y]
* % 11/2 * x 11/2 % *
V14 = [D5%/Dyy] / s Vaa = [A]1/45)] / s = Ay /Ay,
(731, 71) = (& /°)(Ass — 8Dss /1 + 16Fss /1", Aay — 8Dus /2 + 16Fu /1*) /Dy,
(11, 712) = (AIaA}Tx)R[ATlA;z/DﬁD;z}1/47
(M, P M P!) = & (M., 4P. /3¢ M, , 4P, /31")a’ /=’ D}, D, Dipd; A7),

Iy = 01/ (2/R0)D}\ Dy /A1 A]", 6y = (4:/a)/ (2/R)D}, Dt} Azy]

in which 4] = 4] are defined by

i1l
T =- *ldz 18
|:A)T —t/2 Ay ( )
and the details of which can be found in Appendix A.

The nonlinear equations (5)—(8) may then be written in dimensionless form as

Ly (W) — eLip(Wy) — eLis(P,) + &714L1a(F) — 91F o = s LW + Wy F) (19)
1

Ly (F) + y24Loa (W) 4 724L23(Wy) — €924 Loa(W) 4 924 W e = — 5?24[32L(W + 20, W) (20)

eLsy (W) + Lap(Vy) — Las (V) + p1aLsa(F) =0 (21)

Lyt (W) — Lo (¥x) + Las(¥y) + 714Laa(F) = 0 (22)
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where W = W* + W,j, and W is the additional deflection caused by additional compressive stresses that
develop in the panel with immovable edges, and for the case of movable straight edges W; = 0. In Eqs.
(19)—(22) the operators become
ot , o 4 O
Lu() = Vno@Jr%’nz.B axz—aszr 74P o

o Lo
Lip( )= Vuo@"‘ V122 oy

o , 0
Lis( )= Vmﬁ%Jr“/mﬁ 6_)/3

Liu( )= . i S ﬁ464
14 —V14oax4 V142 x20)? 7144 o

ot o 64
Lo( )= o aa T 29,08 20y +V214ﬂ4

o Lo
Lyp( )= 72073 + 720 w07

o | o
Ly( )= ?231ﬂ%+"/233/3 e

! , o , 0
L( ) = Vz4o@ + 29208 W + V2aa @

o o Lo
Ly () = V}l&*‘%m@"‘?mﬂ oy

02 62
Lon( ) =731 — V3025 o 7322.32

62
Ly( ) = ?331ﬁm

Ly( ) =Ln( )

0 o | o
L = — 4 - -
a( ) V4lﬂay+/411ﬁax26y+“/413/3 o
Lpp( ) =Lx()

02 62

Ls( ) =ya — “/4306 > V432ﬁ2
Laa( ) =Las( )

* e P R
() =a257 2oy oty T a2
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Because of the definition of ¢ given in Eq. (17), for most of the FGMs [D},Dj,47,45,]"/* = 0.31, hence
when Z = (a? /Rt) > 2.96, we have ¢ < 1. In particular, for homogeneous isotropic cylindrical panels, we
have ¢ = n2/Zyf°[12(1 — ?)]"/?, where Zy(= b*/Rt) should be greater than 11.95 in the case of classical
linear buckling analysis (see Vol'mir, 1967), and in such a case ¢ < 1 is always valid unless f < 0.5. When
e < 1, Egs. (19)—(22) are equations of the boundary layer type, from which nonlinear prebuckling defor-
mations, large deflections in the postbuckling range and initial geometric imperfections of the panel can be
considered simultaneously.

The boundary conditions of Egs. (12a)—(12g) become

x=0,n
W=V=¥=0 (24a)
M, =P, =0 (24b)
,8 dy +22,6=0 (24c¢)

y=0,m
wW=%¥ =0 (24d)
F=0 (24)

T OF
——dx =0 (movable edges) (24f)
o Ox

V=0 (immovable edges) (24g)

The in-plane boundary condition expressed by Eq. (13b) becomes

/ / 62F7 262F n ov, ﬁ L 62W BZaZ
o) 6 P Y24\ V220 2 o + Vsm €2\ V2s0 =25 ) + Yex

1 ow oW oW,
+ vl — Vz4ﬁ ( > ) /24/32 o Gy &(Pr2 = VsV11) AT] dydx=0 (25)

The unit end-shortening relationship becomes

o , O°F O’F oY, oY,
=" 2n2y24 b 92 Vs ) T Vs +/z33ﬂ

W oW 1 ow ow ow:
— &)y (Vﬁll o + /244ﬁ2 ) 5“/24(§> R 6—xT+ e(y34r11 — VSVTZ)AT]dxdy =0

(26)

By virtue of the fact that AT is assumed to be uniform, the thermal coupling in Egs. (5)—(8) vanishes, but
terms in AT intervene in Egs. (25) and (26).

Applying Egs. (19)-(23), (24a)—(24g), (25), (26), the postbuckling behavior of perfect and imperfect,
FGM cylindrical panels subjected to axial compression and under thermal environments is determined by a
singular perturbation technique. The essence of this procedure, in the present case, is to assume that
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W =w(x,,e) + W(x,&,,¢) + W(x,6,,¢)
F=[(x,y.e)+ F(x,&ye) +F(x,cye)

W, = (x,y,8) + Pulx, &, y,2) + Pa(x, 0, 2)
Y, =, (x,,8) + Py(x, & y,e) + Py(x,0,0,0)

where & is a small perturbation parameter (under the limitation of Z > 2.96) and w(x,y,¢), f(x,y,¢),
Y. (x,,¢), ¥,(x,»,¢) are called outer solutions or regular solutions of the panel, W(x,& y,8), F(x, & p,¢),

V. (x,&p,¢), Pylx, & p,¢) and W(x,g,y7 €), F( X, 8,05 8), 'I’x( X, G,V 8), '?’y( X,¢,»,¢) are the boundary layer
solutions near the x = 0 and x = = edges, respectively, and & and ¢ are the boundary layer variables, defined
as

E=x/Ve, c=(n—x)/Ve (28)

(This means for homogeneous isotropic cylindrical panels the width of the boundary layers is of order v/Rt.)
In Eq. (27) the regular and boundary layer solutions are taken in the form of perturbation expansions as

w(x,y, € prxy f(x,p,¢ Zs"fxy

(29a)
Y. (x,,8) = ZF/(%)A,(& y), ¥,(x, 8) => dW,),x)
=1 =1
W(x,&y,8) Zw Wia(x,&y),  F(x, &y, Zsﬁ Fja(x, &)
(29b)
X é ya ZP]+3/2 /+3/2(x é y) )’(xvéayag = Z’ghLz y j+2(x7 émy)
Jj=0
W 557y7 Zgl I/V/+l a$7y)7 ﬁ(xag,yag) :Z'gj+2ﬁi+2(xag7y)
=0
J+3/2( W -~ 205 (29C)
Wx(xagmya 8) :ZS i (TX>_/'+3/2(-X7 gvy)7 qu(xagayag) = ZS (Ty)j+2(xaG7y)
j=0 j=0
The initial buckling mode is assumed to have the form
wa(x,y) = A(lzl) sin mx sin ny (30)

It should be remembered that, because of the definition of W given in Eq. (17), this means that w,(x,y)
corresponds to w; (X, Y) and the initial geometric imperfection is assumed to have the similar form

W*(x,y,€) = &aj, sin mx sin ny (31)

Substituting Egs. (27), (28), (29a)-(29¢) into Eqgs. (19)—(22), and collecting terms of the same order of &, we
obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively.

Then using Egs. (30) and (31) to solve these perturbation equations of each order, and matching the
regular solutions with the boundary layer solutions at each end of the panel, so that the asymptotic so-
lutions are constructed as



6000 H.-S. Shen | International Journal of Solids and Structures 39 (2002) 5991-6010

W—s{A&)—A&f(aé] cosqb\/_qtam smqﬁ\/_>exp<oc%>

Y T—X (). ,T—X T—x
—Ago)<aél)cos¢\/g+a(m>sm¢\/E>exp (—oc 7 )]
+¢ [A > sin mx sin ny + A (cos 2ny — 1) — AJ) (cos 2ny — 1)(a01 cosq’>—+ all) sin ¢

NG
X exp (— a%) — A4 (cos 2ny — 1)(“01 COS¢7+a'O sin ¢ \/5x>

X exp <—ocn\/§x)] +e [A Y sin mx sin ny + A (cos 2ny — 1)}

7)

+ ¢ [Ag(t) + AS) cos 2mx + A (cos 2ny — 1) + A sin mx sin 3ny + AL (cos 4ny — 1)} +0(&%)

(32)
2 2
F= Booy2 —|—e[ B(()})yz} +e [ B(()Oy2 + B sin mxsin ny + 4\ (bézl)cosqb%—f—b(l%) sin(b%)
X exp <— oc7> +A00 < o1 cos¢7+bw sin ¢ \/;) exp(—an—\/‘;ﬂ

[ 2 BOY 4 B cos my + A2 (cos 2my — 1 2 b sing -
+e 05+ &) cos 2ny + 4 (cos 2ny — 1) ( B cosqb\/_—l— smqﬁ\/g

xexp(—a\if) + 45 (cos 2ny — 1)<b<()1 cosp \[ +b10 sin ™=~ \[ )eXp<_an—\;5xﬂ

2
pet| —BYWL _p L + B\Y sin mx sin ny + 320 cos 2mx + 302 cos2ny + B13 sin mx sin 3ny} +0O(&%)

0 5 %0 5
_ (33)
P, =&/ {AOO P T sinqﬁ% exp ( \/_) + A3 sin¢n\;gx exp ( - ocn—\;;)]
+ &2[CY cos mx sin ny] + &/ [Aoz (cos 2ny — 1)¢l%/? sin qb% exp < - ac\%)
+ A5 (cos 2ny — 1)cly/? sin d) \[ exp ( - an—\;;ﬂ +&[CY cos mx sin ny]
+ &*[C'} cos mxsin ny + CL) sin 2mx + C!3) cos mx sin 3ny] + O(&%) (34)

Y, = (DY sin mx cos ny] + & {D(ﬁ) sin mx cos ny + DY) sin 2ny — (45 2nf sin 2ny)
( b1 €OS qS + d\)) sin ¢ \/_> exp ( - a%) — (45 2npsin 2ny)

( o1 cosqS——Fle sm(j)\/;) exp(—an\;;)}

+ & [D\Y sin mx cos ny + D< sin 2ny + D,? sin mx cos 3ny] + O(&®) (35)
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It is noted that in Eq. (33) for the case of movable straight edges boo = 0. In order to satisfy boundary
condition w; = 0 on y = 0, 7 straight edges, A00 in Eq. (32) is expanded by Fourier sine series in the y-
direction according to

A Y Csingy (36)
T a5/
and remain a constant in the x-direction. Because of Eq. (32), the prebuckling deformation of the panel is
nonlinear.

Note that Eqgs. (32)-(35) are somewhat different from those of axially compressed cylindrical shells
(Shen, 2002a). All of the coefficients in Eqs. (32)—(35) are related and can be expressed in terms of Ai?, but
for the sake of brevity the detailed expressions are not shown, whereas « and ¢ are given in detail in
Appendix A.

Next, upon substitution of Egs. (32)—(35) into the boundary condition (24c) and into Eqgs. (25) and (26),
the postbuckling equilibrium paths can be written as

Jp =20 = I AaTe) + 20 (Ae) + - (37)
and
gy = 00 — o0+ o2 A 4 AT (%)

In Egs. (37) and (38), (A(l2l)£) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (n/2m, n/2n), from
Eq. (32) one has

Agzl)(g: W, — @3Wn21+"' (39a)
where W, is the dimensionless form of maximum deflection of the panel that can be written as
1 t w

W ==
m * * * « 11/4
& [D11D22A11A22]/ !

+ 0, (39b)
All symbols used in Egs. (37)—(39b) are also described in detail in Appendix A. It is noted that now /1 and
(z =0,2,4,...) are all functions of temperature and position.

Eqs (37) (39b) are employed to obtain numerical results for full nonlinear postbuckling load—shortening
or load—deflection curves of FGM cylindrical panels subjected to axial compression in thermal environ-
ments. The initial buckling load of a perfect panel can readily be obtained numerically, by setting W /¢t =
while taking W/t = 0 (note that W, # 0). In this case, the minimum buckling load is determined by con-
sidering Eq. (37) for various values of the buckling mode (m, n), which determine the number of half-waves
in the X- and Y-directions.

4. Numerical results and comments

Numerical results are presented in this section for FGM cylindrical panels with two constituent mate-
rials. Two sets of material mixture are considered. One is silicon nitride and stainless steel, referred to as
Si3N4/SUS304, and the other is zirconium oxide and titanium alloy, referred to as ZrO,/Ti-6Al-4V.
However, the analysis is equally applicable to other types of FGMs. The material properties P, such as
Young’s modulus £ and thermal expansion coefficient «, can be expressed as a function of temperature (see
Touloukian, 1967) as

P:PO(P,ITPI+1+P1T+P2T2+P3T3) (40)
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in which 7 = T, + AT and T; = 300 K (room temperature), Py, P_;, P, P, and P; are the coeflicients of
temperature 7 (K) and are unique to the constituent materials. Typical values for Young’s modulus £ (in
Pa) and thermal expansion coefficient « (in K=!) of these materials are listed in Table 1 (from Reddy and
Chin, 1998). Poisson’s ratio v is assumed to be a constant, and v = 0.28.

As part of the validation of the present method, the buckling loads for isotropic cylindrical panels
subjected to axial compression are compared in Tables 2 and 3 with the numerical and analytical results
based on the first order shear deformation theory obtained by Jaunky and Knight (1999), and the classical
shell theory solutions of Turvey (1977). These two comparisons show that the results from the method
presented agree well with the comparator solutions.

The buckling loads P, (in MN) for perfect SizN,/SUS304 and ZrO,/Ti—6Al-4V cylindrical panels with
different values of volume fraction index N subjected to axial compression and under thermal environ-
mental conditions are compared in Tables 4 and 5. In computation, the panel length-to-width ratio
a/b=1.2and b = 0.3 m. It can be seen that, for the Si;N,/SUS304 cylindrical panel, a fully metallic panel
(N = 0) has lowest buckling load and that the buckling load is increased as N increases. It can also be seen
that the buckling load of the ZrO,/Ti-6Al-4V cylindrical panel is lower than that of the Si;N,/SUS304
panel. Usually, the buckling loads are reduced with increases in temperature. In contrast, for ZrO,/Ti-6Al-
4V cylindrical panel (a/R = 0.5 and b/t = 60) the buckling load under thermal environmental condition
AT = 200 K is higher than that under thermal environmental condition AT = 0 K, when N > 3. Therefore,

Table 1
Temperature-dependent coefficients for ceramics and metals, from Reddy and Chin (1998)
Materials P P, P, P, P
Zirconia E 244.27e4+9 0 —1.371e-3 1.214e-6 -3.681e—10
o 12.766e—6 0 —1.491e-3 1.006e—5 —6.778e—11
Silicon nitride E 348.43e+9 0 —-3.070e-4 2.160e-7 —8.946e-11
o 5.8723e—6 0 9.095¢—4 0 0
Ti-6Al-4V E 122.56e+9 0 —4.586e—4 0 0
o 7.5788e—6 0 6.638¢—4 —3.147e-6 0
Stainless steel E 201.04e+9 0 3.079¢-4 —6.534e-7 0
o 12.330e—-6 0 8.086e—4 0 0
Table 2
Comparisons of buckling loads N, (in Ibs/in) for isotropic cylindrical panels under axial compression (E = 10 x 10° psi and v = 0.3)
a/b a/R b/t Jaunky and Knight (1999) Present HSDT
FEM Donnell-theory
3.1831 10 78.5398 41945.4 53080.6 51419.68
3.1831 10 157.0796 12360.0 13834.1 13119.99
3.1831 10 314.1593 3358.8 3549.9 3228.12
1.5915 5 78.5398 50545.6 54817.2 53863.71
1.5915 5 157.0796 27020.0 28259.2 26239.99
0.7958 25 314.1593 14204.4 14378.4 13391.37
Table 3
Comparisons of buckling loads N,/ER for isotropic cylindrical panels under axial compression (v = 0.3)
a/b a/R b/t Turvey (1977) CLT Present HSDT
4.0 1.0 25 0.73675¢—4 0.71410e—4 (3,1)*
1.333 1.0 75 0.60523e—4 0.58737e—4 (2,2)

4The number in brackets indicate the buckling mode (m, n).
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Table 4

Comparisons of buckling loads P, (in MN) for perfect Si;N4/SUS304 cylindrical panels subjected to axial compression and in thermal
environments (a/b = 1.2, b= 0.3 m and 7, = 300 K)

N a/R=0.5, b/t =30 a/R=10, b/t =30 a/R=05,b/t =60
AT =0K AT =200 K AT =0 K AT =200 K AT =0K AT =200 K
0 4.9565 (1,1)* 4.0541 10.2899 (3,1) 9.9258 (2.2) 1.2968 (1.3) 1.0906 (2.2)
02 5.4489 4.5268 113137 11.0764 (2,2) 1.4261 1.1919
0.5 5.8836 4.9672 12.2149 120141 (3,1) 1.5396 1.2778
1.0 6.2758 5.3811 13.0261 12.7691 (3,1) 1.6413 1.3579
2.0 6.6488 5.7845 13.7970 13.4870 (3,1) 1.7377 1.4429
3.0 6.8431 5.9947 14.1989 13.8614 (3,1) 1.7881 1.4933
5.0 7.0594 6.2257 14.6475 142797 (3.1) 1.8445 1.5561
8.0 7.2280 6.4023 14.9982 14.6071 (3,1) 1.8889 1.6098
10.0 7.2968 6.4734 15.1416 14.7412 (3,1) 1.9071 1.6328

#The number in brackets indicate the buckling mode (m, n).

Table 5
Comparisons of buckling loads P, (in MN) for perfect ZrO,/Ti-6A1-4V cylindrical panels subjected to axial compression and in
thermal environments (a/b = 1.2, b = 0.3 m and 7, = 300 K)

N a/R=0.5,b/t =30 a/R=10, b/t =30 a/R=05,b/t =60
AT =0K AT =200 K AT=0K AT =200 K AT =0K AT =200 K
0 2.5213 (1,1) 2.1801 5.2343 (3,1) 4.6950 (3,1) 0.6596 (3,1) 0.5983 (2,2)
0.2 2.7891 2.2524 5.7912 5.1472 3,1) 0.7300 0.5795
0.5 3.0253 2.2821 6.2808 5.5604 (2,2) 0.7916 0.5941
1.0 3.2386 2.2995 6.7219 5.6574 (2,2) 0.8469 0.6734
2.0 3.4420 2.3338 7.1422 57262 (2,2) 0.8995 0.8196
3.0 3.5481 2.3665 7.3618 5.7730 (2,2) 0.9270 0.9125
5.0 3.6663 2.4145 7.6070 5.8523 (2,2) 0.9579 1.0147
8.0 3.7584 2.4572 7.7985 5.9402 (2,2) 0.9821 1.0867
10.0 3.7960 2.4752 7.8768 5.9828 (2,2) 0.9920 1.1136

#The number in brackets indicate the buckling mode (m, n).

Si3N4/SUS304 cylindrical panels are considered in the parametric study only. Typical results are shown in
Figs. 2-7. It is mentioned that in all figures 7 /¢ denotes the dimensionless maximum initial geometric
imperfection of the panel.

Fig. 2 gives the postbuckling load-shortening and load—deflection curves for Si3N,/SUS304 cylindrical
panels with volume fraction index N = 2.0 subjected to axial compression and under three sets of thermal
environmental conditions, i.e. AT = 0, 100 and 200 K. It can be seen that the well-known ‘“‘snap-through™
behavior of the panel occurs and the imperfection sensitivity can be predicted. It can also be found that the
buckling loads and postbuckling strength are reduced with increases in temperature, but the postbuckling
path becomes higher when the deflection is sufficiently large.

Fig. 3 gives the postbuckling load—shortening and load—deflection curves for Si;sN,/SUS304 cylindrical
panels with different values of volume fraction index N (=0.2, 2.0 and 10.0) subjected to axial compression
and under thermal environmental condition A7 = 200 K. It can be seen that the panel has lower buckling
load and postbuckling path when it has lower volume fraction.

Fig. 4 shows the effect of width-to-thickness ratio /¢ (=20, 30 and 60) on the postbuckling behavior of
Si3N4/SUS304 cylindrical panels with volume fraction index N = 2.0 subjected to axial compression and
under thermal environmental condition AT = 200 K. Then Fig. 5 shows the effect of length-to-width ratio
a/b (=1.2 and 2.5) on the postbuckling behavior of Si;N4/SUS304 cylindrical panels under the same
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Fig. 2. Effect of temperature rise on the postbucking behavior of Si;N,/SUS304 cylindrical panels: (a) load—shortening and (b) load—
deflection.

12 12
SiN,/SUS304 Si,N,/SUS304
T,=300K, AT = 200K o3 T, =300 K, AT = 200 K 3
ab =12, aR =05, b/t =30 / 2 ab=12,aR=05, b/t =30 /2
o 3
(m,n)=(1,1) S (m,n)=(1,1) /)

P, (MN)

4 Y/ (N S
; ——Wh=00
rrrrrrr Wt=0.05 e W= 005
0 1 . 0 1 1 1 1
-2 0 2 4 6 8 0 2 4 6 8 10
LN=02 A (mm) LN=02 W (mm)
2N=20 2N=20
3:N=10.0 3: N=10.0
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Fig. 3. Effect of volume fraction index N on the postbuckling behavior of Si;N4/SUS304 cylindrical panels: (a) load-shortening and
(b) load—deflection.

condition. The results show that the buckling load is decreased as b/t increases from 20 to 60, or as a/b
increases from 1.2 to 2.5 and the postbuckling equilibrium path becomes significantly lower. Changes of
buckling mode can be seen for the panel with b/t = 60 or a/b = 2.5 and postbuckling equilibrium path
becomes stable.
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Fig. 4. Effect of width-to-thickness ratio on the postbuckling behavior of Si;N,/SUS304 cylindrical panels: (a) load-shortening and
(b) load—deflection.
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Fig. 5. Effect of length-to-width ratio on the postbuckling behavior of Si;N,/SUS304 cylindrical panels: (a) load-shortening and
(b) load—deflection.

Fig. 6 shows the effect of length-to-radius ratio a/R (= 0.2, 0.5 and 0.75) on the postbuckling behavior of
Si3N4/SUS304 cylindrical panels with volume fraction index N = 2.0 subjected to axial compression and
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Fig. 6. Effect of length-to-radius ratio on the postbuckling behavior of Si3;N4/SUS304 cylindrical panels: (a) load—shortening and
(b) load—deflection.
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Fig. 7. Effect of in-plane boundary conditions on the postbuckling behavior of Si;N4/SUS304 cylindrical panels: (a) load—shortening
and (b) load—deflection.

under thermal environmental condition AT = 200 K. The results show that the panel with a/R = 0.2 has
stable postbuckling equilibrium path due to its flatted configuration, while the panel with a/R = 0.75 has
higher buckling load than others, and has considerable postbuckling strength.
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Table 6
Imperfection sensitivity A for imperfect Si;N4/SUS304 cylindrical panels (a/b = 1.2, a/R = 0.5, b/t = 30) with different values of
volume fraction index N and under thermal environmental condition (7; = 300 K and AT = 0 K)

Wt N

0.2 2.0 10.0
0 1.0 1.0 1.0
0.02 0.882 0.880 0.880
0.04 0.799 0.795 0.795
0.06 0.735 0.731 0.731
0.08 0.682 0.679 0.679
0.10 0.638 0.634 0.634
0.12 0.599 0.595 0.595
0.14 0.565 - -

Fig. 7 compares postbuckling load—shortening and load—deflection curves for Si;N4/SUS304 cylindrical
panels under two cases of the in-plane boundary conditions. It is noted that in the case of immovable edges
the postbuckling path is no longer of the bifurcational type.

Postbuckling load—shortening and load-deflection curves for imperfect (W' /t = 0.05) as well as perfect
w" /t = 0) panels are plotted in each of Figs. 2-7. The imperfection sensitivity A" is calculated and com-
pared in Table 6 for SizN4/SUS304 cylindrical panels subjected to axial compression and under thermal
environmental condition AT = 0 K. Here, 1* is the maximum value of ¢, for the imperfect panel, made
dimensionless by dividing by the critical value of ¢, for the perfect panel as shown in Table 4. These results
show that the volume fraction index N has a very small effect on the imperfection sensitivity of the panel.

5. Concluding remarks

In order to assess the effects of temperature rise and volume fraction index on the postbuckling behavior
of FGM cylindrical panels subjected to axial compression, a fully nonlinear postbuckling analysis is pre-
sented based on Reddy’s higher order shear deformation shell theory with a von Karman—Donnell-type of
kinematic nonlinearity. Material properties are assumed to be temperature dependent, and graded in the
thickness direction according to a simple power law distribution in terms of the volume fractions of the
constituents. The boundary layer theory of shell buckling has been extended to the case of FGM cylindrical
panels subjected to compressive axial loads in thermal environments. A singular perturbation technique is
employed to determine buckling loads and postbuckling equilibrium paths. Numerical results are for Si;Ny/
SUS304 and ZrO,/Ti-6Al-4V cylindrical panels. In effect, the results provide information about post-
buckling behaviors of FGM panels for different proportions of the ceramic and metal. The results reveal
that the axially loaded FGM panel displays a complex form of postbuckling behavior which depends on the
properties of the panel itself. They also confirm that the characteristics of postbuckling are significantly
influenced by temperature rise, volume fraction distribution, panel geometric parameters as well as initial
geometric imperfections.
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Appendix A
In Eq. (18)
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in the above equations (with other g;; and g;; are defined as in Shen (2002c))
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for the case of immovable straight edges

« 2?14?24”2ﬁ2 @\? 1 (m4 + 23’%4’14,84)
Ay = Tngog(l +2p) (An ) ;o Cn= Z“/z4gnT(1 +2u)e,

1 oyhgm®(1+ W’ !
128 480836

_ V5714724 M (1 + 1)’ ! (A4)

. dn =m? A+ ysn*f, du
4 ”2ﬁ2g39g(2)6

Cy =

and for the case of movable straight edges

A =0, Cp= i“/z4m2g13(1 +2u)e, Cy =0, dy= mz,d44 =0 (A.S)
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